Hold on to Your Moons! Ice, Atmospheres and the Grand Tack

Hold on to Your Moons! Ice, Atmospheres and the Grand Tack

Among the many ideas proposed to explain the formation of our Solar system, one of the leading theories is the “Grand Tack”. This scenario suggests that, early in their formation, Jupiter and Saturn undertook a sweeping voyage, migrating from the outer Solar System to within the orbit of Mars. The two huge planets then entered an orbital resonance with each other, before their cosmic dance took them back out to their current positions. The model neatly explains, amongst other things, the current locations of Mars, the Asteroid Belt and the outer planets—which are hard to recreate in models assuming a more static Solar System.

Determining the (minimum) heights of atmospheres on exoplanets

Determining the (minimum) heights of atmospheres on exoplanets

One of the major questions among astronomers who study planets around other stars is, “What kinds of atmospheres do exoplanets have?” This question is extremely challenging to answer empirically: not only are most exoplanets too faint and close to their stars for us to see directly (see this post for an exception), but their atmospheres (especially on small, potentially rocky planets) are only a tiny fraction of the planet’s total composition.

See how Astronomy and Climate Action go hand-in-hand in and join us at

X