computer simulations

This tag is associated with 6 posts

Gas to Black Holes: Direct formation of a supermassive black hole in galaxy mergers

Supermassive black holes (SMBH) likely exist at the center of every massive galaxy in our universe. How these million to billion solar mass beasts form is not well understood. The authors in today’s astrobite examine the possibility of the direct collapse of massive gas clouds to form SMBH seeds in a computer simulation of a galaxy merger.

A Reflection on Astrophysical Simulations

In this short critical essay, a computational astrophysicist, Kevin Heng, questions the movement of his field toward more complex models producing larger volumes of data. Toward the end of his essay, Heng poses some open questions to the simulation community. “Is scientific truth more robustly represented by the simplest, or the most complex model?”, and, “How may we judge when a simulation has successfully approximated reality in some way?”

Something from Nothing: Simulating our Universe

High resolution computational simulations are a valuable means by which Astronomers test our understanding of the Universe, and make predictions. The world of computational astrophysics broke new ground recently with the highest resolution cosmological simulation to date, Illustris, making for some spectacular science and some spectacular images.

A History: The Superkick Papers

Imagine a spinning skater. She pulls her arms in a little and spins faster. She brings her arms all the way into her chest, and spins really fast, and then bam! she rockets up into the sky. Seven years ago, computer simulations revealed a configuration of two spinning black holes that merged in this way, jumping out of their orbital plane with a velocity of several thousand km/s. Not only is this weird, it’s also important. We know that large galaxies host supermassive black holes at their centers. We also know that galaxies merge, presumably introducing their black holes to one another. If the newly formed black hole were to exit the galaxy entirely, it could carry its accretion disk with it, and be observable as a displaced core.

Seeding Life on Other Worlds

Can life spread from Earth to the moons of Jupiter and Saturn on rock ejected from meteoroid collisions? The authors of this paper start on answering this question by asking if ejected material from Earth can even reach the gas giants’ moons. The answer is yes, so it’s possible that microbial Earthlings have already traveled a lot farther than human ones.

Behind the Scenes of Supernovae Explosions: The Violent Birth of Neutron Stars

Recent computer simulations are shedding light on the brightest and most energetic phenomena in the Universe – supernova explosions. A team of researchers at the Max Planck Institute for Astrophysics modeled the formation of neutron stars in three dimensions with unprecedented accuracy, showing that as matter is drawn inward, it sloshes both asymmetrically and in spiral motions. It’s a bold, new look into the center of the supernova explosion and the birth of a neutron star.

Want an Astrobites t-shirt?

Enter the Astrobites reader survey to help us focus our content and style to serve you best. You could win a free Astrobites t-shirt!

Follow us on Twitter

Like us on Facebook

Astroplots Astroplots to explore astronomy research through data representation.


Enter your email address to subscribe to Astrobites and receive notifications of new posts by email.