A New Look at Gamma-Rays From Our Galaxy’s Next-Door Neighbour

Title: On the Gamma-Ray Emission of the Andromeda Galaxy M31

Authors: Yi Xing, Zhongxiang Wang, Dong Zheng, and Jie Li

First Author’s Institution: Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai

Status: Submitted to ApJL, open access on arXiv

Gamma-rays represent the highest energy photons in our universe. Naturally, they come from some of the most extreme environments in the universe, such as pulsars, active galactic nuclei (AGN), supernovae, and potentially even dark matter. Though many gamma-ray sources have been detected both in the Milky Way and extra-galactically, the nature of gamma-ray emission from our closest neighbouring galaxy, Andromeda (or M31) remains somewhat of a mystery.

Fermi-LAT is a space-based gamma-ray observatory that has been surveying the sky for high energy gamma-rays since 2008, with ample data taken on Andromeda throughout its flight. Many groups have analyzed this data, with more data giving more insight into what’s making these gamma-rays.

To extend or not to extend?

Up until today’s paper, it looked like gamma-rays from Andromeda were coming from a blob-like shape (called extended emission) at the centre of the galaxy (similar to Figure 1, left). This was particularly exciting, since extended structure in this gamma-ray emission often suggests either a distribution of cosmic rays or the presence of a massive dark matter halo.

Cosmic rays are primarily charged particles that travel at relativistic speeds through the universe but get easily diverted by magnetic fields, making it very difficult to trace their origin from Earth. Luckily, since there are processes that produce gamma-rays from charged particles (hadronic processes), identifying regions of extended gamma-rays can trace regions where populations of cosmic rays are interacting with their environments. On the other hand, clumps of massive dark matter located in the centre of Andromeda could decay or annihilate, producing gamma-rays in the process.

Figure 1: Significance map of Andromeda at energies from 0.1-500 GeV (left) and 2-500 GeV (right). The region of optical emission is represented by the white contour. The colorbar corresponds to test statistic, which is similar to significance. A test statistic of 25 corresponds to a detection. Green markers correspond to nearby sources found in the SIMBAD database. The left figure shows a hint of additional structure in the southeast region of Andromeda, but both point sources emerge out of the seemingly extended region only with the lowest energies cut out. (Source: Figure 1 from the paper).

Where are the gamma-rays coming from?

A reanalysis of 14 years of Fermi-LAT data by the authors reveals that the emission of gamma-rays isn’t extended after all. In fact, it seems that it’s constrained to two point sources: one located right at the centre of the galaxy, and another ~6 kpc to the southeast (see Figure 1). This only became apparent when the authors cut out the lowest energy gamma-rays, which still make the data appear more or less extended when they’re included. Even more curiously, the authors found that both of these regions are significantly brighter than expected, when compared to the gamma-ray emission of our own Galactic centre (see Figure 2).

Figure 2: A spectral energy distribution (SED) showing flux (quantity of gamma-rays received) plotted against energy of Andromeda’s centre (black) and southeast (red) emission regions, along with the Milky Way’s Galactic centre (blue). It is apparent that both sources are not only similar in brightness, but are also producing significantly more gamma-rays than our Galactic centre. (Source: Figure 2 from the paper).

This new picture of Andromeda’s gamma-rays changes a lot about our understanding of the galaxy. It’s no longer likely that Andromeda’s central gamma-ray hotspot is coming from a dark matter halo or cosmic ray distribution, so the authors looked to the Milky Way’s Galactic centre to figure out what sorts of objects could be responsible for the gamma-rays. One of the leading theories for our own Galactic centre gamma-rays is a population of old, unresolved objects, such as millisecond pulsars (MSPs). However, in the case of Andromeda, at least 15,000 MSPs would be needed to account for the especially bright gamma-ray emission. While it’s still uncertain whether or not the centre of Andromeda can host this huge number of MSPs, we’ve only detected around 200 MSPs in the Milky Way’s centre, so this explanation seems unlikely.

The authors also investigate the southeast source that appeared in their new analysis. Since galaxies are pretty far apart from one another, the chance of finding two or more galaxies by coincidence in a circle drawn around both the central and southeast sources is only ~0.4%. This means that the emission is most likely coming from within Andromeda. As seen in Figure 2, the off-centre source is almost exactly the same brightness as Andromeda’s centre source (which is peculiar in its own right!), leading to the same problem of identifying sources capable of emitting such bright emission. After looking through X-ray and optical surveys, the authors determined that there weren’t any good counterparts for this region in other wavelengths either. Even if the low probability of this being an extragalactic source behind Andromeda is considered, there aren’t any known counterparts in the region of the sky where this hotspot is located. 

The results found by today’s authors are certainly unexpected and open up a whole new can of worms when it comes to figuring out the origin of the gamma-rays in our neighbouring galaxy. Even though there are still a lot of unknowns, future observations and analyses of these newly constrained regions will help us understand how bright gamma-rays are produced near the centres of galaxies, and may even help us better understand our own Galactic centre. 

Astrobite edited by Ivey Davis and Katya Gozman

Featured image credit: Adam Evans, Wikimedia Commons

About Samantha Wong

I'm a graduate student at McGill University, where I study high energy astrophysics. This includes studying all sorts of extreme environments in the universe like active galactic nuclei, pulsars, and supernova remnants with the VERITAS gamma-ray telescope.

Discover more from astrobites

Subscribe to get the latest posts to your email.

Leave a Reply